Deletion of IκB‐Kinase β in Smooth Muscle Cells Induces Vascular Calcification Through β‐Catenin–Runt‐Related Transcription Factor 2 Signaling

نویسندگان

  • Isehaq Al‐Huseini
  • Noboru Ashida
  • Takeshi Kimura
چکیده

BACKGROUND Vascular calcification was previously considered as an advanced phase of atherosclerosis; however, recent studies have indicated that such calcification can appear in different situations. Nevertheless, there has been a lack of mechanistic insight to explain the difference. For example, the roles of nuclear factor-κB, a major regulator of inflammation, in vascular calcification are poorly explored, although its roles in atherosclerosis were well documented. Herein, we investigated the roles of nuclear factor-κB signaling in vascular calcification. METHODS AND RESULTS We produced mice with deletion of IKKβ, an essential kinase for nuclear factor-κB activation, in vascular smooth muscle cells (VSMCs; KO mice) and subjected them to the CaCl2-induced aorta injury model. Unexpectedly, KO mice showed more calcification of the aorta than their wild-type littermates, despite the former's suppressed nuclear factor-κB activity. Cultured VSMCs from the aorta of KO mice also showed significant calcification in vitro. In the molecular analysis, we found that Runt-related transcription factor 2, a transcriptional factor accelerating bone formation, was upregulated in cultured VSMCs from KO mice, and its regulator β-catenin was more activated with suppressed ubiquitination in KO VSMCs. Furthermore, we examined VSMCs from mice in which kinase-active or kinase-dead IKKβ was overexpressed in VSMCs. We found that kinase-independent function of IKKβ is involved in suppression of calcification via inactivation of β-catenin, which leads to suppression of Runt-related transcription factor 2 and osteoblast marker genes. CONCLUSIONS IKKβ negatively regulates VSMC calcification through β-catenin-Runt-related transcription factor 2 signaling, which revealed a novel function of IKKβ on vascular calcification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of c1q/tumor necrosis factor-related protein-3 promotes phosphate-induced vascular smooth muscle cell calcification both in vivo and in vitro.

OBJECTIVE Vascular calcification is highly correlated with increased cardiovascular morbidity and mortality. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine that plays important roles in cardiovascular system. Here, we investigated the role of CTRP3 in vascular calcification and its underlying mechanism. APPROACH AND RESULTS Adenine-induced chronic renal fa...

متن کامل

Endogenous Sulfur Dioxide Inhibits Vascular Calcification in Association with the TGF-β/Smad Signaling Pathway

The study was designed to investigate whether endogenous sulfur dioxide (SO₂) plays a role in vascular calcification (VC) in rats and its possible mechanisms. In vivo medial vascular calcification was induced in rats by vitamin D3 and nicotine for four weeks. In vitro calcification of cultured A7r5 vascular smooth muscle cells (VSMCs) was induced by calcifying media containing 5 mmol/L CaCl₂. A...

متن کامل

Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magn...

متن کامل

In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation.

The present study investigates the differential effect of two vitamin D receptor agonists, calcitriol and paricalcitol, on human aortic smooth muscle cells calcification in vitro. Human vascular smooth muscle cells were incubated in a high phosphate (HP) medium alone or supplemented with either calcitriol 10(-8)M (HP + CTR) or paricalcitol 3·10(-8) M (HP + PC). HP medium induced calcification, ...

متن کامل

Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells

We previously reported that Runx2/miR-3960/miR-2861 regulatory feedback loop stimulates osteoblast differentiation. However, the effect of this feedback loop on the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) remains unclear. Our recent study showed that miR-2861 and miR-3960 expression increases significantly during β-glycerophosphate-induced osteogenic transdiffere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018